# Glen Earrach Pumped Storage Hydro

**Environmental Impact Assessment Report** 

**Volume 5: Appendices** 

Appendix 14.1: Acoustic Terminology

Glen Earrach Energy Ltd



## Quality information

| Prepared by                          | Checked by                          | Verified by                         | Approved by                      |
|--------------------------------------|-------------------------------------|-------------------------------------|----------------------------------|
| James Lennon<br>BSc (Hons) MSc AMIOA | Alex Southern<br>BSc (Hons) MSc PhD | Alex Southern<br>BSc (Hons) MSc PhD | John Daly                        |
| BOC (FIORS) MOC AMIOA                | MIOA                                | MIOA                                |                                  |
| Acoustic Consultant                  | Associate Acoustic Consultant       | Associate Acoustic Consultant       | Associate Director Town Planning |

## Issue History

| Issue | Issue date | Details    | Authorized | Name      | Position                                 |
|-------|------------|------------|------------|-----------|------------------------------------------|
| 1     | March 2025 | Submission | DL         | David Lee | Technical Director –<br>Renewable Energy |
|       |            |            |            |           |                                          |
|       |            |            |            |           |                                          |
|       |            |            |            |           |                                          |

#### © 2025 AECOM Limited. All Rights Reserved.

This document has been prepared by AECOM Limited ("AECOM") for sole use of our Client (**Glen Earrach Energy Limited**) in accordance with generally accepted consultancy principles, the budget for fees and the terms of reference agreed between AECOM and the Client. Any information provided by third parties and referred to herein has not been checked or verified by AECOM, unless otherwise expressly stated in the document. No third party may rely upon this document without the prior and express written agreement of AECOM.

# **Table of Contents**

| 1.1          | Overview of Acoustic Terminology |
|--------------|----------------------------------|
|              |                                  |
| Tables       |                                  |
| Table 1 Exan | nples of typical noise levels1   |

# 1.1 Overview of Acoustic Terminology

Between the quietest audible sound and the loudest tolerable sound there is a million to one ratio in sound pressure (measured in pascals, Pa). Because of this wide range a noise level scale based on logarithms is used in noise measurement called the decibel (dB) scale. Audibility of sound covers a range of approximately 0 to 140 dB.

The human ear system does not respond uniformly to sound across the detectable frequency range and consequently instrumentation used to measure noise is weighted to represent the performance of the ear. This is known as the 'A weighting' and annotated as dB (A) or L<sub>pA</sub> dB. Table 1 below lists the sound pressure level in dB (A) for common situations.

The noise level at a measurement point is rarely steady, even in rural areas, and varies over a range dependent upon the effects of local noise sources. Close to a busy road, the noise level may vary over a range of 5 dB(A), whereas in a suburban area this may increase up to 40 dB(A) and more due to the multitude of noise sources in such areas (cars, dogs, aircraft etc.) and their variable operation. Furthermore, the range of night-time noise levels will often be smaller and the levels significantly reduced compared to daytime levels.

Table 1 Examples of typical noise levels

| <b>Typical</b> | noise | level. | dB(A   | ) Example |
|----------------|-------|--------|--------|-----------|
| . , p          |       | ,      | ~_(, , | , =xap.o  |

| 71  |                                            |  |
|-----|--------------------------------------------|--|
| 0   | Threshold of hearing                       |  |
| 30  | Rural area at night, still air             |  |
| 40  | Public library, refrigerator humming at 2m |  |
| 50  | Quiet office, no machinery                 |  |
| 60  | Normal conversation                        |  |
| 70  | Telephone ringing at 2m                    |  |
| 80  | General factory noise level                |  |
| 90  | Heavy goods vehicle from pavement          |  |
| 100 | Pneumatic Drill at 5m                      |  |
| 120 | Discotheque – 1m in front of loudspeaker   |  |
| 140 | Threshold of pain                          |  |

The equivalent continuous A-weighted sound pressure level, L<sub>Aeq dB</sub>, is the single number that represents the average sound energy measured over that period. The L<sub>Aeq</sub> is the sound level of a notionally steady sound having the same energy as a fluctuating sound over a specified measurement period.

When considering environmental noise, it is necessary to consider how to quantify the existing noise (the ambient noise) to account for these second to second variations. A parameter that is widely accepted as reflecting human perception of the ambient noise is the background noise level,  $L_{A90}$ . This is the noise level exceeded for 90 % of the measurement period and generally reflects the noise level in the lulls between individual noise events. Over a one hour period, the  $L_{A90}$  will be the noise level exceeded for 54 minutes.

Human subjects are generally only capable of noticing changes in steady levels of no less than 3 dB. It is generally accepted that a change of 10 dB in an overall, steady noise level is perceived to the human ear as a doubling (or halving) of the noise level. These findings do not necessarily apply to transient or non-steady noise sources such as changes in noise due to changes in road traffic flow, or intermittent noise sources.



